
libreant Documentation
Release 0.6

insomnialab

Jul 10, 2018

Contents

1 About libreant 3

2 Libreant architecture 5
2.1 How to set up an aggregator . 5

3 Librarian 7
3.1 Presets system . 7

4 Sysadmin 11
4.1 Installation . 11
4.2 Execution . 12
4.3 Upgrading . 13

5 How to write documentation 15
5.1 Markup language . 15
5.2 Documentation directory . 15
5.3 Documenting code . 16

6 How to develop 17
6.1 Ingredients . 17
6.2 Installation . 17
6.3 Code design . 18
6.4 Testing . 19
6.5 Contributing . 20

7 API 21
7.1 archivant package . 21
7.2 conf package . 25
7.3 libreantdb package . 26
7.4 presets package . 30
7.5 users package . 32

8 Libreant changelog 39
8.1 0.6 . 39
8.2 0.5 . 40
8.3 0.4 . 41
8.4 0.3 . 42

i

9 Indices and tables 43

Python Module Index 45

ii

libreant Documentation, Release 0.6

Contents:

Contents 1

libreant Documentation, Release 0.6

2 Contents

CHAPTER 1

About libreant

Libreant is a book manager for both digital and paper documents. It can store any kind of digital data actually, not only
books. It’s db structure makes Libreant highly customizable, documents can be archived by their types with different
metadata set, moreover you can create your own preset and choose default descriptors for that kind of volume. The
search function looks throught over the db, and rank matches powered by ElasticSearch. The language of metadata
(as title, or description) is a compulsory field, since the db will use it to optimize the search.

Elements into Libreant are defined as volumes, for each volume you can attach many files, usually this files are pdf or
book scansions. Libreant is built and intended as a federation of nodes, every node is an archive. From a node you can
search into friend-nodes, with OpenSearch protocol. Possible extensions into Web are suspended.

Libreant aims to share, find and save books. It can be used by librarian who needs an archive system or to collect
digital items in a file sharing project.

Libreant is created by InsomniaLab, a hacklab in Rome. for any doubts, suggestion or similar write to: insom-
nialab@hacari.org

Libreant is Ubercool

3

mailto:insomnialab@hacari.org
mailto:insomnialab@hacari.org

libreant Documentation, Release 0.6

4 Chapter 1. About libreant

CHAPTER 2

Libreant architecture

Libreant is meant to be a distributed system. Actually, you can even think of nodes as standalone-systems. A node is
not aware of other nodes. It is a single point of distribution with no knowledge of other points.

The system that binds the nodes together is the aggregator; an aggregator acts only as a client with respect to the
nodes. Therefore multiple aggregators can coexist. This also implies that the node administration does not involve
the management of the aggregation mechanism and of the aggregators themselves. Similarly, it is possible to run an
aggregator without running a libreant node. As a consequence, a node cannot choose whether to be aggregated or not.

The aggregation mechanism is based on Opensearch, and relies on two mandatory fields:

• the Opensearch description

• the Opensearch response

meaning that this entries are mandatory on a node in order to be aggregated. The result component heavily relies on
the relevance extension of the response spec.

We blindly trust this relevance field, so a malicious node could bias the overall result, simply increasing the relevance
fields of its entries. In this way, the management of the aggregators implies also the task of checking the fairness of
the aggregated nodes.

2.1 How to set up an aggregator

1. Install Libreant. Follow the instructions on Installation.

2. Launch Libreant setting the AGHERANT_DESCRIPTIONS configuration parameters. Its value should be a list
of URLs. Each URL represents the Opensearch description. For Libreant it’s located in /description.xml,
so a typical URL looks like:

http://your.doma.in/description.xml

and a typical invocation looks like:

5

http://www.opensearch.org/Home
http://www.opensearch.org/Specifications/OpenSearch/1.1#OpenSearch_description_document
http://www.opensearch.org/Specifications/OpenSearch/1.1#OpenSearch_response_elements
http://www.opensearch.org/Specifications/OpenSearch/Extensions/Relevance/1.0

libreant Documentation, Release 0.6

libreant --agherant-descriptions "http://your.doma.in/description.xml http://
→˓other.node/description.xml"

If you want to aggregate the same libreant instance that you are running, there’s a shortcut: just use SELF.
Here’s an example:

libreant --agherant-descriptions "SELF http://other.node/description.xml"

Note: Through agherant command line program, it’s possible to run an aggregator without launching the whole
libreant software

6 Chapter 2. Libreant architecture

CHAPTER 3

Librarian

This chapter is dedicated to librarians, people who manage the libreant node, decide how to structure the database,
organize informations and supervise the catalogue.

3.1 Presets system

One of the things that make libreant powerful is that there are almost no assumptions and restrictions about infor-
mations you can catalog with it. You can use libreant to store digital book, organize physical book metadata, CDs,
comics, organization reports, posters and so on.

Stored object informations are organized in a collection of key-values pairs:

title: Heart of Darkness
author: Joseph Conrad
year: 1899
country: United Kingdom

Normally, when users insert new objects in the database they can choose the number and the type of key-values pairs
to save, without any restrictions. Language field is the only one information that is always required.

All this freedom could be difficult to administrate, so libreant provide the preset system as a useful tool to help
librarians.

3.1.1 Preset

A preset is a set of rules and properties that denote a class of object. For example, if you want to store physical book
metadata in your libreant node and for every book you want to remember the date in which you bought that book, in
this case you can create a preset for class bought-book that has always a property with id date.

7

libreant Documentation, Release 0.6

3.1.2 Quick steps creation

To create a new preset you need to create a new json file, populate it and configure libreant to use it.

Every preset is described by one json formatted text file. So in order to create a new preset you need to create a new
text file with .json extension. This is the simplest preset you can do:

{
"id": "bought-book",
"properties": []

}

Once you have created all your presets you can use the PRESET_PATHS configuration variable to make libreant use
them. PRESET_PATHS accepts a list of paths (strings), you can pass paths to file or folders containing presets.

Start libreant and go to the add page, you should have a list menu from which you can choose one of your presets. If
some of your presets are not listed, you can take a look at log messages to investigate the problem.

3.1.3 Preset structure

The preset file has some general fields that describe the matadata of the preset (id, description, etc. . .) and a list of
properties describing informations that objects belonging to this preset must/should have.

Preset example:

{
"id": "bought-book",
"allow_upload": false,
"description": "bought physical book",
"properties": [{ "id": "title",

"description": "title of the book",
"required": true

},
{ "id": "author",
"description": "author of the book",
"required": true

},
{ "id": "date",
"description": "date in which book was bought",
"required": true

},
{ "id": "genre",
"description": "genre of the book",
"required": true,
"type": "enum",
"values": ["novel", "scientific", "essay", "poetry"]

}]
}

General fields:

Key Type Required Default Description
id string True id of the preset
description string False “” a brief description of the preset
allow_upload boolean False True permits upload of files during submission
properties list True list of properties

8 Chapter 3. Librarian

libreant Documentation, Release 0.6

Property fields:

Key Type Required Default Description
id string True id of the property
description string False “” a brief description of the property
required boolean False False permits to leave this property empty during submission
type string False “string” the type of this property
values list Enum type used if type is “enum”

String type

String type properties will appear in the add page as a plain text field.

Enum type

Enum type properties will appear in the add page as a list of values. Possible values must be placed in values field as
list of strings. values field are required if the type of the same property is “enum”.

3.1. Presets system 9

libreant Documentation, Release 0.6

10 Chapter 3. Librarian

CHAPTER 4

Sysadmin

4.1 Installation

Libreant is written in Python and uses Elasticsearch as the underlying search engine. In the follwoing sections there
are the step-by-step guides to install Libreant on different linux-based operating system:

• Debian, Ubuntu and all the debian based distributions

• Arch Linux

4.1.1 Debian & Ubuntu

System dependencies

Install Elasticsearch

The recommended way of installing Elasticsearch on debian-based distro is through the official APT repository.

Note: If you have any problem installing elasticsearch try to follow the official deb installation guide

In order to follow the Elasticsearch installation steps we needs to install some common packages:

sudo apt-get update && sudo apt-get install apt-transport-https wget gnupg ca-
→˓certificates

Download and install the Public Signing Key for elasticsearch repo:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -

Add elasticsearch repository:

11

https://www.elastic.co/guide/en/elasticsearch/reference/6.0/deb.html

libreant Documentation, Release 0.6

echo "deb https://artifacts.elastic.co/packages/6.x/apt stable main" | sudo tee -a /
→˓etc/apt/sources.list.d/elastic-6.x.list

And finally you can install the Elasticsearch package with:

sudo apt-get update && sudo apt-get install openjdk-8-jre-headless procps
→˓elasticsearch

Note: The procps provides the ps command that is required by the elasticsearch startup script

Install Python

Libreant is going to be installed into a python virtual environment, thus we need to install it:

sudo apt-get update && sudo apt-get install python2.7 virtualenv python-wheel

Install libreant

Create a virtual env:

virtualenv -p /usr/bin/python2 ve

Install libreant and all python dependencies:

./ve/bin/pip install libreant

4.1.2 Arch

Install all necessary packages:

sudo pacman -Sy python2 python2-setuptools python2-virtualenv grep procps
→˓elasticsearch

Note: The procps and grep packages are required by the elasticsearch startup script

Create a virtual env:

virtualenv2 -p /usr/bin/python2 ve

Install libreant and all python dependencies:

./ve/bin/pip install libreant

4.2 Execution

Start elasticsearch service:

12 Chapter 4. Sysadmin

libreant Documentation, Release 0.6

sudo service elasticsearch start

Note: If you want to automatically start elasticsearch during bootup:

sudo systemctl enable elasticsearch

To execute libreant:

./ve/bin/libreant

4.3 Upgrading

Generally speaking, to upgrade libreant you just need to:

./ve/bin/pip install -U libreant

And restart your instance (see the Execution section).

Some versions, however, could need additional actions. We will list them all in this section.

4.3.1 Upgrade to version 0.5

libreant now supports elasticsearch 2. If you were already using libreant 0.4, you were using elasticsearch 1.x. You
can continue using it if you want. The standard upgrade procedure is enough to have everything working. However,
we suggest you to upgrade to elasticsearch2 sooner or later.

Step 1: stop libreant

For more info, see Execution; something like pkill libreant should do

Step 2: upgrade elasticsearch

Just apply the steps in Installation section as if it was a brand new installation.

Note: If you are using archlinux, you’ve probably made pacman ignore elasticsearch package updates. In order to
install the new elasticsearch version you must remove the IgnorePkg elasticsearch line in /etc/pacman.
conf before trying to upgrade.

Step 3: upgrade DB contents

Libreant ships a tool that will take care of the upgrade. You can run it with ./ve/bin/libreant-db upgrade.

This tool will give you information on the current DB status and ask you for confirmation before proceding to real
changes. Which means that you can run it without worries, you’re still in time for answering “no” if you change your
mind.

4.3. Upgrading 13

libreant Documentation, Release 0.6

The upgrade tool will ask you about converting entries to the new format, and upgrading the index mapping (in
elasticsearch jargon, this is somewhat similar to what a TABLE SCHEMA is in SQL)

14 Chapter 4. Sysadmin

CHAPTER 5

How to write documentation

We care a lot about documentation. So this chapter is both about technical reference and guidelines.

5.1 Markup language

Documentation is written using restructuredText; it’s a very rich markup language, so learning it all may be difficult.
You can start reading a quick guide; you can then pass to a slightly longest guide.

As with all the code, you can learn much just reading pre-existing one. So go to next section and you’ll know where
it is placed.

5.2 Documentation directory

Documentation is placed in doc/source/ in libreant repository. Yes, it’s just a bunch of .rst files. The main one
is index.rst, and hist main part is the toctree directive; the list below it specifies the order in which to include
all the other pages.

Note: If you are trying to add a new page to the documentation, remember to add its filename to the toctree in
index.rst

To build html documentation from it, you should first of all pip install Sphinx inside your virtualenv. Then
you can run python setup.py build_sphinx. This command will create documentation inside build/
sphinx/html/. So run firefox build/sphinx/html/index.html and you can read it.

See also:

Installation

15

http://sphinx-doc.org/rest.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

libreant Documentation, Release 0.6

5.3 Documenting code

If you are a developer, you know that well-documented code is very important: it makes newcomers more comfortable
hacking your project, it helps clarifying what’s the goal of the code you are writing and how other parts of the project
should use it. Keep in mind that libreant must be easily hackable, and the code should be kept reusable at all levels as
much as possible.

Since 99% of libreant code is Python, we’ll focus on it, and especially on python docstrings.

If you are writing a new module, or anyway creating a new file, the “module docstring” (that is, the docstring just at
the start of the file) should explain what this module is useful for, which kind of objects will it contain, and clarify any
possible caveat.

The same principle applies to classes and, to a lesser degree, to methods. If a class docstring is complete enough, it
can be the case that function docstring is redundant. Even in that case, you should at least be very careful in giving
meaningful names to function parameters: they help a lot, and come for free!

16 Chapter 5. How to write documentation

CHAPTER 6

How to develop

This chapter is dedicated to developers, and will guide you through code organization, design choices, etc. This is not
a tutorial to python, nor to git. It will provide pointers and explanation, but will not teach you how to program.

6.1 Ingredients

libreant is coded in python2.7. Its main components are an elasticsearch db, a Fsdb and a web interface based on
Flask.

6.1.1 Details about libraries

Elasticsearch is a big beast. It has a lot of features and it can be scaring. We can suggest this elasticsearch guide. The
python library for elasticsearch, elasticsearch-py, is quite simple to use, and has a nice documentation.

Fsdb is a quite simple “file database”: the main idea behind it is that it is a content-addressable storage. The address
is simply the sha1sum of the content.

Flask is a “web microframework for python”. It’s not a big and complete solution like django, so you’ll probably get
familiar with it quite soon.

6.2 Installation

6.2.1 Using virtualenv

We will assume that you are familiar with virtualenvs. If you are not, please get familiar!

Inside a clean virtualenv, run

python setup.py develop

17

https://www.elasticsearch.org/
https://github.com/ael-code/pyFsdb/
http://flask.pocoo.org/
https://www.elasticsearch.org/guide/en/elasticsearch/guide/current/index.html
https://elasticsearch-py.readthedocs.org/
https://github.com/ael-code/pyFsdb/
http://flask.pocoo.org/

libreant Documentation, Release 0.6

You are now ready to develop. And you’ll find two tools inside your $PATH: webant and libreant-manage.
The first is a webserver that will run the web interface of libreant, while the second is a command-line tool to do basic
operations with libreant: exporting/importing items, searching, etc.

6.2.2 Using Vagrant

Download, setup and run the virtual machine:

vagrant up

You will then find in /liberant the installation of liberant, you can login to the vagrant box with:

vagrant ssh

6.3 Code design

This section is devoted to get a better understanding on why the code is like it is, the principles that guides us, and
things like that.

6.3.1 Design choices

few assumptions about data We try to be very generic about the items that libreant will store. We do not adhere to
any standard about book catalogation, nor metadata organization, nor nothing like that. We leave the libraries
free to set metadata how they prefer. There is only one mandatory field in items, which is language. The
reason it is this way, is that it’s important to know the language of the metadata in order for full-text search to
work properly. There are also two somewhat-special fields: title and actors; they are not required, but are
sometimes used in the code (being too much agnostic is soo difficult!)

no big framework we try to avoid huge frameworks like django or similar stuff. This is both a precise need, and a
matter of taste. First of all, libreant uses many different storage resources (elasticsearch, fsdb, and this list will
probably grow), so most frameworks will not fit our case. But it’s also because we want to avoid that the code
is “locked” in a framework and therefore difficult to fork.

6.3.2 File organization

setup.py is the file that defines how libreant is installed, how are packages built, etc. The most common reason you
could care about it, is if you need to add some dependency to libreant.

libreantdb

libreantdb/ is a package containing an abstraction over elasticsearch. Again: this is elasticsearch-only, and
completely unaware of any other storage, or the logic of libreant itself.

webant

webant/ is a package; you could think that it only contains web-specific logic, but this is not the case. Instead, all
that is not in libreantdb is in webant, which is surely a bit counterintuitive.

18 Chapter 6. How to develop

libreant Documentation, Release 0.6

The web application (defined in webant.py) “contains” a Blueprint called agherant. Agherant is the part of
libreant that cares about “aggregating” multiple nodes in one single search engine. We believe that agherant is an
important component, and if we really want to make libreant a distributed network, it should be very reusable. That’s
why agherant is a blueprint: it should be reusable easily.

manage.py is what will be installed as libreant-manage: a simple command-line manager for lot of libreant
operations. libreant-manage is meant to be a tool for developers (reproduce scenarios easily) and sysadmins
(batch operations, debug), surely not for librarians! This program is actually based on flask-script, so you may wonder
why we use flask for something that is not web related at all; the point is that we use flask as an application framework
more than a web framework.

templates/ is. . . well, it contains templates. They are written with jinja templating language. The render_template
function

documentation

Documentation is kept on doc/source/ and is comprised of .rst files. The syntax used is restructuredText. Don’t
forget to update documentation when you change something!

6.3.3 API

You can read API

6.3.4 Coding style

PEP8 must be used in all the code.

Docstrings are used for autogenerating api documentation, so please don’t forget to provide clear, detailed explanation
of what the module/class/function does, how to use it, when is it useful, etc. If you want to be really nice, consider
using restructured-text directives to improve the structure of the documentation: they’re fun to use.

We care a lot about documentation, so please don’t leave documentation out-of-date. If you change the parameters
that a function is accepting, please document it. If you are making changes to the end user’s experience, please fix the
user manual.

Never put “binary” files in the source. With ‘binary’, we also mean “any files that could be obtained programmatically,
instead of being included”. This is, for example, the case of .mo.

6.4 Testing

Unit tests are important both as a way of avoding regressions and as a way to document how something behaves. If
your code is testable, you should test it. Yes, even if its behaviour might seem obvious. If the code you are writing is
not easy to test, you should think of making it more easy to test. We use nose suite to manage tests, you can run all the
tests and read coverage summary by typing:

python setup.py test

We usually follow these simple steps to add new tests:

• create a directory named test inside the package you want to test

• create a file in this folder test/test_sometestgroupname.py

• write test functions inside this file

6.4. Testing 19

http://flask.pocoo.org/docs/0.10/blueprints/
https://flask-script.readthedocs.org/en/latest/
http://jinja.pocoo.org/
http://sphinx-doc.org/rest.html
https://www.python.org/dev/peps/pep-0008/
http://sphinx-doc.org/domains.html#signatures
https://nose.readthedocs.org
http://nose.readthedocs.org/en/latest/writing_tests.html#test-functions

libreant Documentation, Release 0.6

We prefer not to have one big file, instead we usually group tests in different file with a representative name. You can
see a full testing example in the preset package.

Note: if you are testing a new package remember to add the new package name in cover-package directive under
[nosetests] section in /setup.cfg file.

Note: Some of the tests need to connect and use an elasticsearch instance. Be sure to have at least one up and running
before to start the tests. You can use the LIBREANT_ES_HOSTS environment variable to pass custom elasticsearch
connection enpoints in the form http://user:secret@hostname:port.

6.5 Contributing

Like libreant? You can help!

We have a bugtracker, and you are welcome to pick tasks from there :) We use it also for discussions. Our most typical
way of proposing patches is to open a pull request on github; if, for whatever reason, you are not comfortable with
that, you can just contact us by email and send a patch, or give a link to your git repository.

20 Chapter 6. How to develop

https://github.com/insomnia-lab/libreant/tree/master/presets/test
https://github.com/insomnia-lab/libreant/blob/master/setup.cfg
https://github.com/insomnia-lab/libreant/issues

CHAPTER 7

API

7.1 archivant package

class archivant.Archivant(conf={})
Implementation of a Data Access Layer

Archivant handles both an fsdb instance and a libreantdb one and exposes an high-level API to operate on
‘volumes’.

A ‘volume’ represents a physical/digital object stored within archivant. Volumes are structured as described in
normalize_volume(); shortly, they have language, metadata and attachments. An attachment is an URL
plus some metadata.

If you won’t configure the FSDB_PATH parameter, fsdb will not be initialized and archivant will start in
metadata-only mode. In metdata-only mode all file related functions will raise FileOpNotSupported.

dangling_files()
iterate over fsdb files no more attached to any volume

delete_attachments(volumeID, attachmentsID)
delete attachments from a volume

delete_volume(volumeID)

static denormalize_attachment()
convert attachment metadata from archivant to es format

static denormalize_volume()
convert volume metadata from archivant to es format

get_attachment(volumeID, attachmentID)

get_file(volumeID, attachmentID)

get_volume(volumeID)

import_volume(volume)

21

libreant Documentation, Release 0.6

insert_attachments(volumeID, attachments)
add attachments to an already existing volume

insert_volume(metadata, attachments=[])
Insert a new volume

Returns the ID of the added volume

metadata must be a dict containg metadata of the volume:

{
"_language" : "it", # language of the metadata
"key1" : "value1", # attribute
"key2" : "value2",
...
"keyN" : "valueN"

}

The only required key is `_language`

attachments must be an array of dict:

{
"file" : "/prova/una/path/a/caso" # path or fp
"name" : "nome_buffo.ext" # name of the file (extension included)

→˓[optional if a path was given]
"mime" : "application/json" # mime type of the file [optional]
"notes" : "this file is awesome" # notes that will be attached to this

→˓file [optional]
}

is_file_op_supported()

iter_all_volumes()
iterate over all stored volumes

static normalize_attachment()
Convert attachment metadata from es to archivant format

This function makes side effect on input attachment

static normalize_volume()
convert volume metadata from es to archivant format

This function makes side effect on input volume

output example:

{
'id': 'AU0paPZOMZchuDv1iDv8',
'type': 'volume',
'metadata': {'_language': 'en',

'key1': 'value1',
'key2': 'value2',
'key3': 'value3'},

'attachments': [{'id': 'a910e1kjdo2d192d1dko1p2kd1209d',
'type' : 'attachment',
'url': 'fsdb:///624bffa8a6f90813b7982d0e5b4c1475ebec40e3',
'metadata': {'download_count': 0,

'mime': 'application/json',
'name': 'tmp9fyat_',

(continues on next page)

22 Chapter 7. API

libreant Documentation, Release 0.6

(continued from previous page)

'notes': 'this file is awsome',
'sha1':

→˓'624bffa8a6f90813b7982d0e5b4c1475ebec40e3',
'size': 10}

}]
}

shrink_local_fsdb(dangling=True, corrupted=True, dryrun=False)
shrink local fsdb by removing dangling and/or corrupted files

return number of deleted files

update_attachment(volumeID, attachmentID, metadata)
update an existing attachment

the given metadata dict will be merged with the old one. only the following fields could be updated: [name,
mime, notes, download_count]

update_volume(volumeID, metadata)
update existing volume metadata the given metadata will substitute the old one

7.1.1 Submodules

class archivant.archivant.Archivant(conf={})
Implementation of a Data Access Layer

Archivant handles both an fsdb instance and a libreantdb one and exposes an high-level API to operate on
‘volumes’.

A ‘volume’ represents a physical/digital object stored within archivant. Volumes are structured as described in
normalize_volume(); shortly, they have language, metadata and attachments. An attachment is an URL
plus some metadata.

If you won’t configure the FSDB_PATH parameter, fsdb will not be initialized and archivant will start in
metadata-only mode. In metdata-only mode all file related functions will raise FileOpNotSupported.

dangling_files()
iterate over fsdb files no more attached to any volume

delete_attachments(volumeID, attachmentsID)
delete attachments from a volume

delete_volume(volumeID)

static denormalize_attachment()
convert attachment metadata from archivant to es format

static denormalize_volume()
convert volume metadata from archivant to es format

get_attachment(volumeID, attachmentID)

get_file(volumeID, attachmentID)

get_volume(volumeID)

import_volume(volume)

insert_attachments(volumeID, attachments)
add attachments to an already existing volume

7.1. archivant package 23

libreant Documentation, Release 0.6

insert_volume(metadata, attachments=[])
Insert a new volume

Returns the ID of the added volume

metadata must be a dict containg metadata of the volume:

{
"_language" : "it", # language of the metadata
"key1" : "value1", # attribute
"key2" : "value2",
...
"keyN" : "valueN"

}

The only required key is `_language`

attachments must be an array of dict:

{
"file" : "/prova/una/path/a/caso" # path or fp
"name" : "nome_buffo.ext" # name of the file (extension included)

→˓[optional if a path was given]
"mime" : "application/json" # mime type of the file [optional]
"notes" : "this file is awesome" # notes that will be attached to this

→˓file [optional]
}

is_file_op_supported()

iter_all_volumes()
iterate over all stored volumes

static normalize_attachment()
Convert attachment metadata from es to archivant format

This function makes side effect on input attachment

static normalize_volume()
convert volume metadata from es to archivant format

This function makes side effect on input volume

output example:

{
'id': 'AU0paPZOMZchuDv1iDv8',
'type': 'volume',
'metadata': {'_language': 'en',

'key1': 'value1',
'key2': 'value2',
'key3': 'value3'},

'attachments': [{'id': 'a910e1kjdo2d192d1dko1p2kd1209d',
'type' : 'attachment',
'url': 'fsdb:///624bffa8a6f90813b7982d0e5b4c1475ebec40e3',
'metadata': {'download_count': 0,

'mime': 'application/json',
'name': 'tmp9fyat_',
'notes': 'this file is awsome',
'sha1':

→˓'624bffa8a6f90813b7982d0e5b4c1475ebec40e3',
(continues on next page)

24 Chapter 7. API

libreant Documentation, Release 0.6

(continued from previous page)

'size': 10}
}]

}

shrink_local_fsdb(dangling=True, corrupted=True, dryrun=False)
shrink local fsdb by removing dangling and/or corrupted files

return number of deleted files

update_attachment(volumeID, attachmentID, metadata)
update an existing attachment

the given metadata dict will be merged with the old one. only the following fields could be updated: [name,
mime, notes, download_count]

update_volume(volumeID, metadata)
update existing volume metadata the given metadata will substitute the old one

exception archivant.exceptions.ConflictException
Bases: exceptions.Exception

exception archivant.exceptions.FileOpNotSupported
Bases: exceptions.Exception

exception archivant.exceptions.NotFoundException
Bases: exceptions.Exception

7.2 conf package

7.2.1 Submodules

conf.config_utils.from_envvar_file(envvar, environ=None)

conf.config_utils.from_envvars(prefix=None, environ=None, envvars=None, as_json=True)
Load environment variables in a dictionary

Values are parsed as JSON. If parsing fails with a ValueError, values are instead used as verbatim strings.

Parameters

• prefix – If None is passed as envvars, all variables from environ starting with this
prefix are imported. The prefix is stripped upon import.

• envvars – A dictionary of mappings of environment-variable-names to Flask configura-
tion names. If a list is passed instead, names are mapped 1:1. If None, see prefix argument.

• environ – use this dictionary instead of os.environ; this is here mostly for mockability

• as_json – If False, values will not be parsed as JSON first.

conf.config_utils.from_file(fname)

conf.config_utils.load_configs(envvar_prefix, path=None)
Load configuration

The following steps will be undertake:

• It will attempt to load configs from file: if path is provided, it will be used, otherwise the path will be
taken from envvar envvar_prefix + “SETTINGS”.

7.2. conf package 25

libreant Documentation, Release 0.6

• all envvars starting with envvar_prefix will be loaded.

conf.defaults.get_def_conf()
return default configurations as simple dict

conf.defaults.get_help(conf)
return the help message of a specific configuration parameter

7.3 libreantdb package

class libreantdb.DB(es, index_name)
Bases: object

This class contains every query method and every operation on the index

The following elasticsearch body response example provides the typical structure of a single document.

{
"_index" : "libreant",
"_type" : "book",
"_id" : "AU4RleAfD1zQdqx6OQ8Y",
"_version" : 1,
"found" : true,
"_source": {"_language": "en",

"_text_en": "marco belletti pdf file latex manual",
"author": "marco belletti",
"type": "pdf file",
"title": "latex manual",
"_attachments": [{"sha1": "dc8dc34b3e0fec2377e5cf9ea7e4780d87ff18c5

→˓",
"name": "LaTeX_Wikibook.pdf",
"url": "fsdb:///

→˓dc8dc34b3e0fec2377e5cf9ea7e4780d87ff18c5",
"notes": "A n example bookLatex wikibook",
"mime": "application/pdf",
"download_count": 7,
"id": "17fd3d898a834e2689340cc8aacdebb4",
"size": 23909451}]

}
}

add_book(body, doc_type=’book’)

Call it like this: db.add_book(doc_type=’book’, body={‘title’: ‘foobar’, ‘_language’: ‘it’})

autocomplete(fieldname, start)

clone_index(new_indexname, index_conf=None)
Clone current index

All entries of the current index will be copied into the newly created one named new_indexname

Parameters index_conf – Configuration to be used in the new index creation. This param
will be passed directly to DB.create_index()

create_index(indexname=None, index_conf=None)
Create the index

Create the index with given configuration. If indexname is provided it will be used as the new index name
instead of the class one (DB.index_name)

26 Chapter 7. API

libreant Documentation, Release 0.6

Parameters index_conf – configuration to be used in index creation. If this is not specified
the default index configuration will be used.

Raises Exception – if the index already exists.

delete_all()
Delete all books from the index

delete_book(id)

file_is_attached(url)
return true if at least one book has file with the given url as attachment

get_all_books(size=30)

get_book_by_id(id)

get_books_by_actor(authorname)

get_books_by_title(title)

get_books_querystring(query, **kargs)

get_books_simplequery(query)

get_last_inserted(size=30)

increment_download_count(id, attachmentID, doc_type=’book’)
Increment the download counter of a specific file

iterate_all()

mlt(_id)
High-level method to do “more like this”.

Its exact implementation can vary.

modify_book(id, body, doc_type=’book’, version=None)
replace the entire book body

Instead of update_book this function will overwrite the book content with param body

If param version is given, it will be checked that the changes are applied upon that document version. If
the document version provided is different from the one actually found, an elasticsearch.ConflictError will
be raised

properties = {'_insertion_date': {'type': 'long', 'null_value': 0}, '_language': {'index': 'false', 'type': 'text'}, '_text_en': {'type': 'text', 'analyzer': 'english'}, '_text_it': {'type': 'text', 'analyzer': 'it_analyzer'}}

reindex(new_index=None, index_conf=None)
Rebuilt the current index

This function could be useful in the case you want to change some index settings/mappings and you don’t
want to loose all the entries belonging to that index.

This function is built in such a way that you can continue to use the old index name, this is achieved using
index aliases.

The old index will be cloned into a new one with the given index_conf. If we are working on an alias, it is
redirected to the new index. Otherwise a brand new alias with the old index name is created in such a way
that points to the newly create index.

Keep in mind that even if you can continue to use the same index name, the old index will be deleted.

Parameters index_conf – Configuration to be used in the new index creation. This param
will be passed directly to DB.create_index()

settings = {'analysis': {'filter': {'italian_elision': {'articles': ['c', 'l', 'all', 'dall', 'dell', 'nell', 'sull', 'coll', 'pell', 'gl', 'agl', 'dagl', 'degl', 'negl', 'sugl', 'un', 'm', 't', 's', 'v', 'd'], 'type': 'elision'}, 'italian_stop': {'stopwords': '_italian_', 'type': 'stop'}, 'italian_stemmer': {'type': 'stemmer', 'language': 'italian'}}, 'analyzer': {'it_analyzer': {'filter': ['italian_elision', 'lowercase', 'italian_stop', 'italian_stemmer'], 'type': 'custom', 'tokenizer': 'standard'}}}}

7.3. libreantdb package 27

libreant Documentation, Release 0.6

setup_db(wait_for_ready=True)
Create and configure index

If wait_for_ready is True, this function will block until status for self.index_name will be yellow

update_book(id, body, doc_type=’book’)
Update a book

The “body” is merged with the current one. Yes, it is NOT overwritten.

In case of concurrency conflict this function could raise elasticsearch.ConflictError

update_mappings()

user_search(query)
This acts like a “wrapper” that always point to the recommended function for user searching.

7.3.1 Submodules

class libreantdb.api.DB(es, index_name)
Bases: object

This class contains every query method and every operation on the index

The following elasticsearch body response example provides the typical structure of a single document.

{
"_index" : "libreant",
"_type" : "book",
"_id" : "AU4RleAfD1zQdqx6OQ8Y",
"_version" : 1,
"found" : true,
"_source": {"_language": "en",

"_text_en": "marco belletti pdf file latex manual",
"author": "marco belletti",
"type": "pdf file",
"title": "latex manual",
"_attachments": [{"sha1": "dc8dc34b3e0fec2377e5cf9ea7e4780d87ff18c5

→˓",
"name": "LaTeX_Wikibook.pdf",
"url": "fsdb:///

→˓dc8dc34b3e0fec2377e5cf9ea7e4780d87ff18c5",
"notes": "A n example bookLatex wikibook",
"mime": "application/pdf",
"download_count": 7,
"id": "17fd3d898a834e2689340cc8aacdebb4",
"size": 23909451}]

}
}

add_book(body, doc_type=’book’)

Call it like this: db.add_book(doc_type=’book’, body={‘title’: ‘foobar’, ‘_language’: ‘it’})

autocomplete(fieldname, start)

clone_index(new_indexname, index_conf=None)
Clone current index

All entries of the current index will be copied into the newly created one named new_indexname

28 Chapter 7. API

libreant Documentation, Release 0.6

Parameters index_conf – Configuration to be used in the new index creation. This param
will be passed directly to DB.create_index()

create_index(indexname=None, index_conf=None)
Create the index

Create the index with given configuration. If indexname is provided it will be used as the new index name
instead of the class one (DB.index_name)

Parameters index_conf – configuration to be used in index creation. If this is not specified
the default index configuration will be used.

Raises Exception – if the index already exists.

delete_all()
Delete all books from the index

delete_book(id)

file_is_attached(url)
return true if at least one book has file with the given url as attachment

get_all_books(size=30)

get_book_by_id(id)

get_books_by_actor(authorname)

get_books_by_title(title)

get_books_querystring(query, **kargs)

get_books_simplequery(query)

get_last_inserted(size=30)

increment_download_count(id, attachmentID, doc_type=’book’)
Increment the download counter of a specific file

iterate_all()

mlt(_id)
High-level method to do “more like this”.

Its exact implementation can vary.

modify_book(id, body, doc_type=’book’, version=None)
replace the entire book body

Instead of update_book this function will overwrite the book content with param body

If param version is given, it will be checked that the changes are applied upon that document version. If
the document version provided is different from the one actually found, an elasticsearch.ConflictError will
be raised

properties = {'_insertion_date': {'type': 'long', 'null_value': 0}, '_language': {'index': 'false', 'type': 'text'}, '_text_en': {'type': 'text', 'analyzer': 'english'}, '_text_it': {'type': 'text', 'analyzer': 'it_analyzer'}}

reindex(new_index=None, index_conf=None)
Rebuilt the current index

This function could be useful in the case you want to change some index settings/mappings and you don’t
want to loose all the entries belonging to that index.

This function is built in such a way that you can continue to use the old index name, this is achieved using
index aliases.

7.3. libreantdb package 29

libreant Documentation, Release 0.6

The old index will be cloned into a new one with the given index_conf. If we are working on an alias, it is
redirected to the new index. Otherwise a brand new alias with the old index name is created in such a way
that points to the newly create index.

Keep in mind that even if you can continue to use the same index name, the old index will be deleted.

Parameters index_conf – Configuration to be used in the new index creation. This param
will be passed directly to DB.create_index()

settings = {'analysis': {'filter': {'italian_elision': {'articles': ['c', 'l', 'all', 'dall', 'dell', 'nell', 'sull', 'coll', 'pell', 'gl', 'agl', 'dagl', 'degl', 'negl', 'sugl', 'un', 'm', 't', 's', 'v', 'd'], 'type': 'elision'}, 'italian_stop': {'stopwords': '_italian_', 'type': 'stop'}, 'italian_stemmer': {'type': 'stemmer', 'language': 'italian'}}, 'analyzer': {'it_analyzer': {'filter': ['italian_elision', 'lowercase', 'italian_stop', 'italian_stemmer'], 'type': 'custom', 'tokenizer': 'standard'}}}}

setup_db(wait_for_ready=True)
Create and configure index

If wait_for_ready is True, this function will block until status for self.index_name will be yellow

update_book(id, body, doc_type=’book’)
Update a book

The “body” is merged with the current one. Yes, it is NOT overwritten.

In case of concurrency conflict this function could raise elasticsearch.ConflictError

update_mappings()

user_search(query)
This acts like a “wrapper” that always point to the recommended function for user searching.

libreantdb.api.collectStrings(leftovers)

libreantdb.api.current_time_millisec()

libreantdb.api.validate_book(body)
This does not only accept/refuse a book. It also returns an ENHANCED version of body, with (mostly fts-
related) additional fields.

This function is idempotent.

7.4 presets package

class presets.PresetManager(paths, strict=False)
Bases: object

PresetManager deals with presets loading, validating, storing

you can use it like this:

pm = PresetManager(["/path/to/presets/folder", "/another/path"])

MAX_DEPTH = 5

7.4.1 Submodules

class presets.presetManager.Preset(body)
Bases: presets.presetManager.Schema

A preset is a set of rules and properties denoting a class of object

Example: A preset could be used to describe which properties an object that describe a book must have. (title,
authors, etc)

30 Chapter 7. API

libreant Documentation, Release 0.6

check_id()

fields = {'allow_upload': {'default': True, 'required': False, 'type': <type 'bool'>}, 'description': {'default': '', 'required': False, 'type': <type 'basestring'>}, 'id': {'required': True, 'type': <type 'basestring'>, 'check': 'check_id'}, 'properties': {'required': True, 'type': <type 'list'>}}

validate(data)
Checks if data respects this preset specification

It will check that every required property is present and for every property type it will make some specific
control.

exception presets.presetManager.PresetException(message)
Bases: exceptions.Exception

exception presets.presetManager.PresetFieldTypeException(message)
Bases: presets.presetManager.PresetException

class presets.presetManager.PresetManager(paths, strict=False)
Bases: object

PresetManager deals with presets loading, validating, storing

you can use it like this:

pm = PresetManager(["/path/to/presets/folder", "/another/path"])

MAX_DEPTH = 5

exception presets.presetManager.PresetMissingFieldException(message)
Bases: presets.presetManager.PresetException

class presets.presetManager.Property(body)
Bases: presets.presetManager.Schema

A propety describe the format of a peculiarity of a preset

check_id()

check_type()

check_values()

fields = {'description': {'default': '', 'required': False, 'type': <type 'basestring'>}, 'id': {'required': True, 'type': <type 'basestring'>, 'check': 'check_id'}, 'required': {'default': False, 'required': False, 'type': <type 'bool'>}, 'type': {'default': 'string', 'required': False, 'type': <type 'basestring'>, 'check': 'check_type'}, 'values': {'required': 'required_values', 'type': <type 'list'>, 'check': 'check_values'}}

required_values()

types = ['string', 'enum']
fields is used as in Preset class

class presets.presetManager.Schema
Bases: object

Schema is the parent of all the classes that needs to verify a specific object structure.

all child class in order to use schema validation must:

• describe the desired object schema using self.fields

• save input object in self.body

self.fields must be a dict, where keys match the relative self.body keys and values describe how relative self.body
valuse must be.

Example:

7.4. presets package 31

libreant Documentation, Release 0.6

self.fields = { 'description': {
'type': basestring,
'required': False,
'default': ""

},
'allow_upload': {

'type': bool,
'required': False,
'default': True

}
}

fields = {}

7.5 users package

The users package manages the models and the API about users, groups and capabilities. Note that this package does
not specify permissions for objects. Actual permissions are handled at the UI level.

The main concepts are:

• A User is what you think it is; something that you can login as.

• A Group is a collection of users. Note that a user can belong to multiple groups. A group has capabilities.

• A Capability is a “granted permission”. You can think of it like a piece of paper saying, ie. “you can create
new attachments”.

– Its action is a composition of Create, Read, Update, Delete (it follows the CRUD model).

– A domain is a regular expression that must “match” to the description of an object. ie. /cars/* means
“every car”, while /cars/*/tires/ means “the tires of every car”

This also means that a user has no capability (directly). It just belongs to groups, which, in turn, have capabilities.

The rationale behind what a Capability is may seem baroque, but there are several advantages to it:

• it is decoupled from the actual domains used by the UI

• the regular expression make it possible to create groups that can operate on everything (*).

class users.SqliteFKDatabase(database, pragmas=None, *args, **kwargs)
Bases: peewee.SqliteDatabase

SqliteDatabase with foreignkey support enabled

initialize_connection(conn)

users.create_tables(database)
Create all tables in the given database

users.gen_crypt_context(salt_size=None, rounds=None)

users.init_db(dbURL, pwd_salt_size=None, pwd_rounds=None)
Initialize users database

initialize database and create necessary tables to handle users oprations.

Parameters dbURL – database url, as described in init_proxy()

users.init_proxy(dbURL)
Instantiate proxy to the database

32 Chapter 7. API

libreant Documentation, Release 0.6

Parameters dbURL – the url describing connection parameters to the choosen database. The url
must have format explained in the Peewee url documentation.

examples:

• sqlite: sqlite:///my_database.db

• postgres: postgresql://postgres:my_password@localhost:5432/
my_database

• mysql: mysql://user:passwd@ip:port/my_db

users.populate_with_defaults()
Create user admin and grant him all permission

If the admin user already exists the function will simply return

7.5.1 Submodules

exception users.api.ConflictException
Bases: exceptions.Exception

exception users.api.NotFoundException
Bases: exceptions.Exception

users.api.add_capability(domain, action, simplified=True)

users.api.add_capability_to_group(capID, groupID)

users.api.add_group(name)

users.api.add_user(name, password)

users.api.add_user_to_group(userID, groupID)

users.api.delete_capability(capID)

users.api.delete_group(id)

users.api.delete_user(id)

users.api.get_anonymous_user()

users.api.get_capabilities()

users.api.get_capabilities_of_group(groupID)

users.api.get_capability(capID)

users.api.get_group(id=None, name=None)

users.api.get_groups()

users.api.get_groups_of_user(userID)

users.api.get_groups_with_capability(capID)

users.api.get_user(id=None, name=None)

users.api.get_users()

users.api.get_users_in_group(groupID)

users.api.is_anonymous(user)

users.api.remove_capability_from_group(capID, groupID)

users.api.remove_user_from_group(userID, groupID)

7.5. users package 33

http://peewee.readthedocs.org/en/latest/peewee/playhouse.html#db-url

libreant Documentation, Release 0.6

users.api.update_capability(id, updates)

users.api.update_group(id, updates)

users.api.update_user(id, updates)

class users.models.Action
Bases: int

Actions utiliy class

You can use this class attributes to compose the actions bitmask:: bitmask = Action.CREATE | Ac-
tion.DELETE

The following actions are supported:

• CREATE

• READ

• UPDATE

• DELETE

ACTIONS = ['CREATE', 'READ', 'UPDATE', 'DELETE']

CREATE = 1

DELETE = 8

READ = 2

UPDATE = 4

classmethod action_bitmask(action)
return the bitmask associated withe the given action name

classmethod from_list(actions)
convert list of actions into the corresponding bitmask

to_list()
convert an actions bitmask into a list of action strings

class users.models.ActionField(null=False, index=False, unique=False, verbose_name=None,
help_text=None, db_column=None, default=None,
choices=None, primary_key=False, sequence=None, con-
straints=None, schema=None, undeclared=False)

Bases: peewee.IntegerField

db_field = 'action'

db_value(value)
Convert the python value for storage in the database.

python_value(value)
Convert the database value to a pythonic value.

class users.models.BaseModel(*args, **kwargs)
Bases: peewee.Model

DoesNotExist
alias of BaseModelDoesNotExist

id = <peewee.PrimaryKeyField object>

to_dict()

34 Chapter 7. API

libreant Documentation, Release 0.6

class users.models.Capability(*args, **kwargs)
Bases: users.models.BaseModel

Capability model

A capability is composed by a domain and an action. It represent the possibility to perform a specific set of
actions on the resources described by the domain

domain
is a regular expression that describe all the resources involved in the capability. You can use simToReg()
and regToSim() utility function to easily manipulate domain regular expressions.

action
an ActionField what can be done on domain

DoesNotExist
alias of CapabilityDoesNotExist

action = <users.models.ActionField object>

domain = <peewee.CharField object>

groups = <playhouse.fields.ManyToManyField object>

grouptocapability_set
Back-reference to expose related objects as a SelectQuery.

id = <peewee.PrimaryKeyField object>

match(dom, act)
Check if the given domain and act are allowed by this capability

match_action(act)
Check if the given act is allowed from this capability

match_domain(dom)
Check if the given dom is included in this capability domain

classmethod regToSim(reg)
Convert regular expression to simplified domain expression

classmethod simToReg(sim)
Convert simplified domain expression to regular expression

to_dict()

class users.models.Group(*args, **kwargs)
Bases: users.models.BaseModel

Group model

A group has a set of capabilities and a number of users belonging to it. It’s an handy way of grouping users with
the same capability.

DoesNotExist
alias of GroupDoesNotExist

can(domain, action)

capabilities = <playhouse.fields.ManyToManyField object>

grouptocapability_set
Back-reference to expose related objects as a SelectQuery.

id = <peewee.PrimaryKeyField object>

7.5. users package 35

libreant Documentation, Release 0.6

name = <peewee.CharField object>

to_dict()

users = <playhouse.fields.ManyToManyField object>

usertogroup_set
Back-reference to expose related objects as a SelectQuery.

class users.models.GroupToCapability(*args, **kwargs)
Bases: users.models.BaseModel

DoesNotExist
alias of GroupToCapabilityDoesNotExist

capability = <peewee.ForeignKeyField object>

capability_id = <peewee.ForeignKeyField object>

group = <peewee.ForeignKeyField object>

group_id = <peewee.ForeignKeyField object>

class users.models.User(**kargs)
Bases: users.models.BaseModel

User model

DoesNotExist
alias of UserDoesNotExist

can(domain, action)
Can perform action on the given domain.

capabilities

groups = <playhouse.fields.ManyToManyField object>

id = <peewee.PrimaryKeyField object>

name = <peewee.CharField object>

pwd_hash = <peewee.CharField object>

set_password(password)
set user password

Generate random salt, derivate the given password using pbkdf2 algorith and store a summarizing string
in pwd_hash. For hash format refer to passlib documentation.

to_dict()

usertogroup_set
Back-reference to expose related objects as a SelectQuery.

verify_password(password)
Check if the given password is the same stored for this user

class users.models.UserToGroup(*args, **kwargs)
Bases: users.models.BaseModel

DoesNotExist
alias of UserToGroupDoesNotExist

group = <peewee.ForeignKeyField object>

group_id = <peewee.ForeignKeyField object>

36 Chapter 7. API

https://pythonhosted.org/passlib/lib/passlib.hash.pbkdf2_digest.html#format-algorithm

libreant Documentation, Release 0.6

user = <peewee.ForeignKeyField object>

user_id = <peewee.ForeignKeyField object>

7.5. users package 37

libreant Documentation, Release 0.6

38 Chapter 7. API

CHAPTER 8

Libreant changelog

8.1 0.6

8.1.1 Dependencies:

• Added support for Elasticsearch 5.x and 6.x A lot of changes to libreantdb component have been introduced
in order to support the latests version fo ES. (commits: e0bc3094 34c9329b 225d5571 49e8a098 34e0e941
72dd559d 3b0784e7)

• Only major versions of the dependencies are now enforced, in such a way that minor versions updates will be
supported automatically. (826f9b0c)

• Added support for new versions of several dependencies: - Gevent 1.2.x - Flask 0.12.x - passlib 1.7.x - Fsdb
1.2.x - peewee 2.10.x

• Removed unneeded dependency to flask-script

• Better handling of the elasticsearch-py library version. The version of this library to be installed depends upon
which version of elasticsearch are you going to use.

The installation procedure (setup.py) now reads ES_VERSION environment variable in order to choose the
correct version of the elasticseach-py library. e.g. if you are going to use Elasticsearch v5.4 just set
ES_VERSION=5.4 before to proceed with the Libreant installation. If you don’t set the ES_VERSION env
variable, version 6.x of elastcisearch-py will be installed.

Moreover in the case the version of the elasticsearch-py library doesn’t match the one of the Elasticsearch
cluster, an error at runtime is thrown to notify the sysadmin. (2a3299ad)

8.1.2 Documentation:

• Documentation relative to the installation procedure has been refractored. Now each operating system has its
own installation section. Interleaved instructions was too confusing. (1d90e2a2)

• Installation instruction has been updated and tested for all the supported operating systems.

39

libreant Documentation, Release 0.6

• Changelog has been included into the official documentation: http://libreant.readthedocs.io/en/latest/changelog.
html (f5855fa6)

8.1.3 Continuos Integration:

• Test Libreant with Elasticsearch v1.6 and v5.x (fa9b7ad9)

• Test procedure have been simplified through the usage of the new ES_VERSION environment variable.
(f98cf51f)

8.1.4 Docker:

• Docker has been introduced in our testing procedure. (fb3ce767) In particular it is used to test that the installation
steps provided by the documentation are actually working. The installation scenarios are reproduced by means
of docker containers. These tests can be performed whith help of the .docker/test_all.sh script.

8.2 0.5

• Added supoort to Elasticsearch 2.x versions. (PR #281)

• Changed default capability for anonymous (non logged) user: now she can read all volumes in the collection.

Tip: if you have an existing and already initialized user database, it won’t be changed, i.e. if you upgrade from
a previous version of libreant and you have existing users, the anonymous user won’t get the read capability.
In the case you want to add this capability to the already existing anonymous user you can use the following
command:

libreant-users --users-db <users-db-url> group cap-add anonymous "volumes/*" R

8.2.1 CLI:

• Added new command libreant-db import to import volumes all at once. (PR #291)

8.2.2 Web Interface:

• While adding a new book if it is available the language will be autocompleted using the one suggested by the
client’s browser. (based on Accept-Language http field). Thanks @leonaard (PR #288)

8.2.3 API:

• Added endpoints to retrieve collections

– /api/v1/groups/

– /api/v1/users/

– /api/v1/capabilities/

40 Chapter 8. Libreant changelog

http://libreant.readthedocs.io/en/latest/changelog.html
http://libreant.readthedocs.io/en/latest/changelog.html

libreant Documentation, Release 0.6

8.2.4 Dependencies:

• Fsdb: added support till version 1.2.1 (PR #277)

• Gevent: added support for the new version 1.1.1 (PR #298)

• Flask: added support till version 0.11.1 (PR #299)

8.2.5 Bugfixes:

• #255 Libreant starts also if it fails to read the conf file: fixed by PR #260. If some error is encountered while
reading the configuration file the stack trace will be printed if the debug mode is active otherwise a colored
one-line message with the cause of the error will be printed. Moreover the path of the configuration file
will be printed if available.

• #283 Read configuration file error: If the configuration is a valid JSON formatted file but it’s not a dictionary
an exception is raised. (PR #286)

• Tests for Webant were leaving leftover files around (commit 1c050a8)

• In single-user-mode all the users related REST api enpoints are disabled (PR #278)

• CLI: don’t print ‘Error’ string twice (PR #279)

• #287 missing authentication/authorization layer for REST api. For the moment the only supported authen-
tication method is the cookie based one (login through the web UI)

8.3 0.4

8.3.1 Web Interface:

• The page to modify metadata of volumes has been added. If you have enough permission you should see a
button with a pencil on the single-volume-view page.

• Added support for paginated results in search page.

8.3.2 CLI:

• added new command libreant-db insert-volume to insert a volume along with its attachments.

• added new command libreant-db attach to attach new files to an already existing volume.

8.3.3 Logs:

• changed default log level to INFO.

• all startup messages are now printed using loggers.

• using recent versions of gevent (>= 1.1b1) it is now possible to have a completely uniform log format.

8.3. 0.4 41

libreant Documentation, Release 0.6

8.3.4 Warning:

• Due to breaking changes introduced in new version of Elasticsearch (deprecation of _timestamp field), it is
not possible to use libreant with version of Elasticsearch major or equal to 2.0. Probably in the next release
we’ll provide support for these versions.

8.4 0.3

8.4.1 Major changes:

• Implemented a role-based access control layer. This means that libreant now support the common login
procedure. This functionality isn’t documented yet, anyway you can use the brand new libreant-users
command to manage users, groups and capabilities, and enable this feature at runtime with the --users-db
parameter. The default user is (user: admin, password: admin)

8.4.2 Web interface:

• Added possibility to delete a volume through a button on the single-volume-view page.

• New user menu (only in users-mode)

• New login/logut pages.

• Improoved error messages/pages

8.4.3 Deployment:

• Removed elasticsearch strong dependecy. Now libreant can be started with elasticsearch still not ready or not
running.

• Bugfix: make libreant command exits with code 1 on exception.

• Fixed elasticsearch-py version dependency. Now the version must be >=1 and <2.

• Reloader is used only in debug mode (--debug).

• More uniform logs.

8.4.4 Documentation:

• The suggested version for elasticsearch installation has been updated: 1.4 -> 1.7

• A lot of packages have been inserted in the official docs.

42 Chapter 8. Libreant changelog

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

43

libreant Documentation, Release 0.6

44 Chapter 9. Indices and tables

Python Module Index

a
archivant, 21
archivant.archivant, 23
archivant.exceptions, 25

c
conf, 25
conf.config_utils, 25
conf.defaults, 26

l
libreantdb, 26
libreantdb.api, 28

p
presets, 30
presets.presetManager, 30

u
users, 32
users.api, 33
users.models, 34

45

libreant Documentation, Release 0.6

46 Python Module Index

Index

A
Action (class in users.models), 34
action (users.models.Capability attribute), 35
action_bitmask() (users.models.Action class method), 34
ActionField (class in users.models), 34
ACTIONS (users.models.Action attribute), 34
add_book() (libreantdb.api.DB method), 28
add_book() (libreantdb.DB method), 26
add_capability() (in module users.api), 33
add_capability_to_group() (in module users.api), 33
add_group() (in module users.api), 33
add_user() (in module users.api), 33
add_user_to_group() (in module users.api), 33
Archivant (class in archivant), 21
Archivant (class in archivant.archivant), 23
archivant (module), 21
archivant.archivant (module), 23
archivant.exceptions (module), 25
autocomplete() (libreantdb.api.DB method), 28
autocomplete() (libreantdb.DB method), 26

B
BaseModel (class in users.models), 34

C
can() (users.models.Group method), 35
can() (users.models.User method), 36
capabilities (users.models.Group attribute), 35
capabilities (users.models.User attribute), 36
Capability (class in users.models), 34
capability (users.models.GroupToCapability attribute), 36
capability_id (users.models.GroupToCapability at-

tribute), 36
check_id() (presets.presetManager.Preset method), 30
check_id() (presets.presetManager.Property method), 31
check_type() (presets.presetManager.Property method),

31
check_values() (presets.presetManager.Property method),

31

clone_index() (libreantdb.api.DB method), 28
clone_index() (libreantdb.DB method), 26
collectStrings() (in module libreantdb.api), 30
conf (module), 25
conf.config_utils (module), 25
conf.defaults (module), 26
ConflictException, 25, 33
CREATE (users.models.Action attribute), 34
create_index() (libreantdb.api.DB method), 29
create_index() (libreantdb.DB method), 26
create_tables() (in module users), 32
current_time_millisec() (in module libreantdb.api), 30

D
dangling_files() (archivant.Archivant method), 21
dangling_files() (archivant.archivant.Archivant method),

23
DB (class in libreantdb), 26
DB (class in libreantdb.api), 28
db_field (users.models.ActionField attribute), 34
db_value() (users.models.ActionField method), 34
DELETE (users.models.Action attribute), 34
delete_all() (libreantdb.api.DB method), 29
delete_all() (libreantdb.DB method), 27
delete_attachments() (archivant.Archivant method), 21
delete_attachments() (archivant.archivant.Archivant

method), 23
delete_book() (libreantdb.api.DB method), 29
delete_book() (libreantdb.DB method), 27
delete_capability() (in module users.api), 33
delete_group() (in module users.api), 33
delete_user() (in module users.api), 33
delete_volume() (archivant.Archivant method), 21
delete_volume() (archivant.archivant.Archivant method),

23
denormalize_attachment() (archivant.Archivant static

method), 21
denormalize_attachment() (archivant.archivant.Archivant

static method), 23

47

libreant Documentation, Release 0.6

denormalize_volume() (archivant.Archivant static
method), 21

denormalize_volume() (archivant.archivant.Archivant
static method), 23

DoesNotExist (users.models.BaseModel attribute), 34
DoesNotExist (users.models.Capability attribute), 35
DoesNotExist (users.models.Group attribute), 35
DoesNotExist (users.models.GroupToCapability at-

tribute), 36
DoesNotExist (users.models.User attribute), 36
DoesNotExist (users.models.UserToGroup attribute), 36
domain (users.models.Capability attribute), 35

F
fields (presets.presetManager.Preset attribute), 31
fields (presets.presetManager.Property attribute), 31
fields (presets.presetManager.Schema attribute), 32
file_is_attached() (libreantdb.api.DB method), 29
file_is_attached() (libreantdb.DB method), 27
FileOpNotSupported, 25
from_envvar_file() (in module conf.config_utils), 25
from_envvars() (in module conf.config_utils), 25
from_file() (in module conf.config_utils), 25
from_list() (users.models.Action class method), 34

G
gen_crypt_context() (in module users), 32
get_all_books() (libreantdb.api.DB method), 29
get_all_books() (libreantdb.DB method), 27
get_anonymous_user() (in module users.api), 33
get_attachment() (archivant.Archivant method), 21
get_attachment() (archivant.archivant.Archivant method),

23
get_book_by_id() (libreantdb.api.DB method), 29
get_book_by_id() (libreantdb.DB method), 27
get_books_by_actor() (libreantdb.api.DB method), 29
get_books_by_actor() (libreantdb.DB method), 27
get_books_by_title() (libreantdb.api.DB method), 29
get_books_by_title() (libreantdb.DB method), 27
get_books_querystring() (libreantdb.api.DB method), 29
get_books_querystring() (libreantdb.DB method), 27
get_books_simplequery() (libreantdb.api.DB method), 29
get_books_simplequery() (libreantdb.DB method), 27
get_capabilities() (in module users.api), 33
get_capabilities_of_group() (in module users.api), 33
get_capability() (in module users.api), 33
get_def_conf() (in module conf.defaults), 26
get_file() (archivant.Archivant method), 21
get_file() (archivant.archivant.Archivant method), 23
get_group() (in module users.api), 33
get_groups() (in module users.api), 33
get_groups_of_user() (in module users.api), 33
get_groups_with_capability() (in module users.api), 33
get_help() (in module conf.defaults), 26

get_last_inserted() (libreantdb.api.DB method), 29
get_last_inserted() (libreantdb.DB method), 27
get_user() (in module users.api), 33
get_users() (in module users.api), 33
get_users_in_group() (in module users.api), 33
get_volume() (archivant.Archivant method), 21
get_volume() (archivant.archivant.Archivant method), 23
Group (class in users.models), 35
group (users.models.GroupToCapability attribute), 36
group (users.models.UserToGroup attribute), 36
group_id (users.models.GroupToCapability attribute), 36
group_id (users.models.UserToGroup attribute), 36
groups (users.models.Capability attribute), 35
groups (users.models.User attribute), 36
GroupToCapability (class in users.models), 36
grouptocapability_set (users.models.Capability attribute),

35
grouptocapability_set (users.models.Group attribute), 35

I
id (users.models.BaseModel attribute), 34
id (users.models.Capability attribute), 35
id (users.models.Group attribute), 35
id (users.models.User attribute), 36
import_volume() (archivant.Archivant method), 21
import_volume() (archivant.archivant.Archivant method),

23
increment_download_count() (libreantdb.api.DB

method), 29
increment_download_count() (libreantdb.DB method), 27
init_db() (in module users), 32
init_proxy() (in module users), 32
initialize_connection() (users.SqliteFKDatabase method),

32
insert_attachments() (archivant.Archivant method), 21
insert_attachments() (archivant.archivant.Archivant

method), 23
insert_volume() (archivant.Archivant method), 22
insert_volume() (archivant.archivant.Archivant method),

23
is_anonymous() (in module users.api), 33
is_file_op_supported() (archivant.Archivant method), 22
is_file_op_supported() (archivant.archivant.Archivant

method), 24
iter_all_volumes() (archivant.Archivant method), 22
iter_all_volumes() (archivant.archivant.Archivant

method), 24
iterate_all() (libreantdb.api.DB method), 29
iterate_all() (libreantdb.DB method), 27

L
libreantdb (module), 26
libreantdb.api (module), 28
load_configs() (in module conf.config_utils), 25

48 Index

libreant Documentation, Release 0.6

M
match() (users.models.Capability method), 35
match_action() (users.models.Capability method), 35
match_domain() (users.models.Capability method), 35
MAX_DEPTH (presets.PresetManager attribute), 30
MAX_DEPTH (presets.presetManager.PresetManager at-

tribute), 31
mlt() (libreantdb.api.DB method), 29
mlt() (libreantdb.DB method), 27
modify_book() (libreantdb.api.DB method), 29
modify_book() (libreantdb.DB method), 27

N
name (users.models.Group attribute), 35
name (users.models.User attribute), 36
normalize_attachment() (archivant.Archivant static

method), 22
normalize_attachment() (archivant.archivant.Archivant

static method), 24
normalize_volume() (archivant.Archivant static method),

22
normalize_volume() (archivant.archivant.Archivant static

method), 24
NotFoundException, 25, 33

P
populate_with_defaults() (in module users), 33
Preset (class in presets.presetManager), 30
PresetException, 31
PresetFieldTypeException, 31
PresetManager (class in presets), 30
PresetManager (class in presets.presetManager), 31
PresetMissingFieldException, 31
presets (module), 30
presets.presetManager (module), 30
properties (libreantdb.api.DB attribute), 29
properties (libreantdb.DB attribute), 27
Property (class in presets.presetManager), 31
pwd_hash (users.models.User attribute), 36
python_value() (users.models.ActionField method), 34

R
READ (users.models.Action attribute), 34
regToSim() (users.models.Capability class method), 35
reindex() (libreantdb.api.DB method), 29
reindex() (libreantdb.DB method), 27
remove_capability_from_group() (in module users.api),

33
remove_user_from_group() (in module users.api), 33
required_values() (presets.presetManager.Property

method), 31

S
Schema (class in presets.presetManager), 31

set_password() (users.models.User method), 36
settings (libreantdb.api.DB attribute), 30
settings (libreantdb.DB attribute), 27
setup_db() (libreantdb.api.DB method), 30
setup_db() (libreantdb.DB method), 27
shrink_local_fsdb() (archivant.Archivant method), 23
shrink_local_fsdb() (archivant.archivant.Archivant

method), 25
simToReg() (users.models.Capability class method), 35
SqliteFKDatabase (class in users), 32

T
to_dict() (users.models.BaseModel method), 34
to_dict() (users.models.Capability method), 35
to_dict() (users.models.Group method), 36
to_dict() (users.models.User method), 36
to_list() (users.models.Action method), 34
types (presets.presetManager.Property attribute), 31

U
UPDATE (users.models.Action attribute), 34
update_attachment() (archivant.Archivant method), 23
update_attachment() (archivant.archivant.Archivant

method), 25
update_book() (libreantdb.api.DB method), 30
update_book() (libreantdb.DB method), 28
update_capability() (in module users.api), 34
update_group() (in module users.api), 34
update_mappings() (libreantdb.api.DB method), 30
update_mappings() (libreantdb.DB method), 28
update_user() (in module users.api), 34
update_volume() (archivant.Archivant method), 23
update_volume() (archivant.archivant.Archivant method),

25
User (class in users.models), 36
user (users.models.UserToGroup attribute), 36
user_id (users.models.UserToGroup attribute), 37
user_search() (libreantdb.api.DB method), 30
user_search() (libreantdb.DB method), 28
users (module), 32
users (users.models.Group attribute), 36
users.api (module), 33
users.models (module), 34
UserToGroup (class in users.models), 36
usertogroup_set (users.models.Group attribute), 36
usertogroup_set (users.models.User attribute), 36

V
validate() (presets.presetManager.Preset method), 31
validate_book() (in module libreantdb.api), 30
verify_password() (users.models.User method), 36

Index 49

	About libreant
	Libreant architecture
	How to set up an aggregator

	Librarian
	Presets system

	Sysadmin
	Installation
	Execution
	Upgrading

	How to write documentation
	Markup language
	Documentation directory
	Documenting code

	How to develop
	Ingredients
	Installation
	Code design
	Testing
	Contributing

	API
	archivant package
	conf package
	libreantdb package
	presets package
	users package

	Libreant changelog
	0.6
	0.5
	0.4
	0.3

	Indices and tables
	Python Module Index

